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Abstract

Lm?

The relationships between a predator and its prey are subject of numerous studies in ecology. Since the first mathematical model, describing over time such trophic interactions was introduced
([3], [5]), the so-called Lotka Volterra equations, and predator-prey models are still a wide subject of study in population dynamics. For a better modelling, it is interesting to consider an
age-structured prey population, leading to a PDE of transport type. Once the problem is well-posed, we use some spectral analysis results [2] and a stability analysis of the equilibria [6] to study
the time asymptotic behaviour of the solutions. We prove in [4] the existence of two thresholds for the extinction and the explosion of both populations. Finally, using numerical computations, we

show that other behaviours can appear.

1. Lotka-Volterra model

Let (x(¢),y(t)) be the populations at time ¢ of prey and
predator. In the 1920s, Alfred Lotka [3] and Vito Volterra
[5] proposed the ODE model

7' (t) = ax(t) —
{y’( t) = ca(t)y(t
with positive parameters and
e ¢ is the birth rate of the prey:
e d is the mortality rate of the predator;
¢ the nonlinear term models the predation.

This models gives rise to periodic solution which explains
the oscillation of lynx and snowshoe hare in Canada.

(1),

b (t)y
) — dy(t),

Figure 1: Periodic solutions

2. Age-structured model

Consider that birth and death of each prey depend on his
age (a > 0). We get the generalized PDE structured model

Opr + Oz = —M( Jx y(t)v(a)ﬂi’»
y’(t) = fo v(a)z(t, a)da — dy(t),
fo x(t,a) da
CE(O, ) = 2, y(O) = 0,

with o > 0 and where
o 11,7, 3 € LL(Ry) are age-dependent functions;
e o € (0,1) is the assimilation coefficient of ingested preys.

(1)

3. Well-posedness

We assume
g > 0: pla) > pg f.a.e. a > 0. (H1)

Let X = L(R,) x R and X his nonnegative cone.
Consider the operator A: D(A) C X — X, by

() -(%")

D(A) ={(¢,2) € WH(R}) x R, ¢(0) = [7° B(a)¢(a)da}.
and define the function f : X — X by

fio.= (o %))

We then get the abstract Cauchy Problem

(d (z(t)\  [x(t)
@(m&>—AQNQ+f@®w®%
L (2(0),y(0) = (z0,y0) € X.

Classical results of the semigroup theory proves that

/N

Theorem 1. (Existence/uniqueness)
For all (zq,yg) € X4+, Problem (1) has a unique mild solu-
tion (CIZ, y) S~ C(R+, X_|_)
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4. Equilibria

Define
a; = sup{a >0 : |Supp( )N (0,a)] =0} < oo;

Ro—/ Bla

/ B(a ()45 4, (unboundedness threshold).

(s)ds g5 (extinction threshold);

Theorem 2. (Number of equilibrium)

Ri<1Ry>1,R_<1R_>1
E() anndEg E()

where Ey = (0,0) and FE» is a positive steady state.

5. Stability analysis

Using classical results of spectral analysis ([2], [6]), we get
the following characteristic equation for £

/ Bla)e~ fMu)ds gy |
which implies

Theorem 3. (Stability of L)
1. Ry < 1 = Ejis globally stable (Figure 2)
2. Ry > 1 = Ejis unstable.
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Figure 2: Convergence to Ey when Ry < 1

6. And for RO>1 ?

We suppose
dm >0,30<a<a:fla) >2n,a€(ga)  (H2)

It means that preys of a certain range of age have a high
ability to reproduce.
We find a bassin of attraction X, such that

Theorem 4. (Unbounded solutions)
If R > 1 then limysio|x(t,.)]];1 = +oo and
lim¢ 4 o0 y(t) = 400 for every (z, yg) € X, (Figure 3).

Populations over time

Figure 3: Unbounded solutions

When Ry > 1 and R_ < 1, numerical simulations shows
e either convergence to a limit cycle (Figure 4);

e Or convergence to F» (Figure 5).

Figure 4: Limit cycle
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Figure 5: Convergence to E»
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7. Perspectives

Let 7 = C[—7,0] x R and suppose that

= o, v(a) =01 o0f(@), Bla) = Bolj; 4oof(@)-
We thus get the following delay system

(1) = aypx(t)y(t) — oy(t), (2)

{ 2/ (t) = Boe MTx(t — ) — (o + yoy(t))x(t),
Y
z(0) = ¢(0),0 € [-7,0], y(0) = yo,

where (¢,yg) € Z. When Ry > 1, the equilibrium is

¥ — 0 Boe M — g _ (:13* y*)
ay 70 |

We get the characteristic equation p(\) + ¢(A\)e™*7 = 0,

p(A) = A2+ ABoe H0T + Sy,

where {qw = —AGgeH

Absolute stability result from [1] implies

Theorem 5. (Local stability)

If 7\/O0y*~o/2m ¢ Z then E* is loc. asympt. stable.
Let S = {(¢,y) € Z, [, ¢ > 0,y > 0} then
Theorem 6. (Periodic solution)

For every (¢,19) € S the solution of (2) converges to a
T-periodic function.

Populations over time, R0=1.3385 et 3=3
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Figure 6: Convergence to E*

A future work will be to prove that the only 7-periodic solu-
tion is constant, hence the global stability of £ in S follows.
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