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Abstract

The relationships between a predator and its prey are subject of numerous studies in ecology. Since the first mathematical model, describing over time such trophic interactions was introduced
([3], [5]), the so-called Lotka Volterra equations, and predator-prey models are still a wide subject of study in population dynamics. For a better modelling, it is interesting to consider an
age-structured prey population, leading to a PDE of transport type. Once the problem is well-posed, we use some spectral analysis results [2] and a stability analysis of the equilibria [6] to study
the time asymptotic behaviour of the solutions. We prove in [4] the existence of two thresholds for the extinction and the explosion of both populations. Finally, using numerical computations, we
show that other behaviours can appear.

1. Lotka-Volterra model

Let (x(t), y(t)) be the populations at time t of prey and
predator. In the 1920s, Alfred Lotka [3] and Vito Volterra
[5] proposed the ODE model{

x′(t) = ax(t)− bx(t)y(t),
y′(t) = cx(t)y(t)− dy(t),

with positive parameters and
• a is the birth rate of the prey:
• d is the mortality rate of the predator;
• the nonlinear term models the predation.

This models gives rise to periodic solution which explains
the oscillation of lynx and snowshoe hare in Canada.
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Figure 1: Periodic solutions

2. Age-structured model

Consider that birth and death of each prey depend on his
age (a ≥ 0). We get the generalized PDE structured model

∂tx + ∂ax = −µ(a)x− y(t)γ(a)x,
y′(t) = αy(t)

∫∞
0 γ(a)x(t, a)da− δy(t),

x(t, 0) =
∫∞
0 β(a)x(t, a)da,

x(0, .) = x0, y(0) = y0,

(1)

with δ > 0 and where
• µ, γ, β ∈ L∞+ (R+) are age-dependent functions;
• α ∈ (0, 1) is the assimilation coefficient of ingested preys.

3. Well-posedness

We assume

∃µ0 > 0 : µ(a) ≥ µ0 f.a.e. a ≥ 0. (H1)

Let X = L1(R+)× R and X+ his nonnegative cone.
Consider the operator A : D(A) ⊂ X → X, by

A

(
φ
z

)
=

(
−φ′ − µφ
−δz

)
,

D(A) = {(φ, z) ∈ W 1,1(R+)× R, φ(0) =
∫∞
0 β(a)φ(a)da}.

and define the function f : X → X by

f (φ, z) =

(
−zγ(.)φ(.)

αz
∫∞
0 γ(a)φ(a)da

)
.

We then get the abstract Cauchy Problem
d

dt

(
x(t)
y(t)

)
= A

(
x(t)
y(t)

)
+ f (x(t), y(t)),

(x(0), y(0) = (x0, y0) ∈ X.

Classical results of the semigroup theory proves that

Theorem 1. (Existence/uniqueness)
For all (x0, y0) ∈ X+, Problem (1) has a unique mild solu-
tion (x, y) ∈ C(R+, X+).

4. Equilibria

Define

a1 = sup{a ≥ 0 : |supp(γ) ∩ (0, a)| = 0} <∞;

R0 =

∫ ∞
0

β(a)e−
∫ a
0 µ(s)dsds (extinction threshold);

R− =

∫ a1

0
β(a)e−

∫ a
0 µ(s)dsda (unboundedness threshold).

Theorem 2. (Number of equilibrium)

R0 < 1 R0 > 1, R− < 1 R− > 1

E0 E0 andE2 E0

where E0 = (0, 0) and E2 is a positive steady state.

5. Stability analysis

Using classical results of spectral analysis ([2], [6]), we get
the following characteristic equation for E0∫ ∞

0
β(a)e−

∫ a
0 [λ+µ(s)]dsda = 1

which implies

Theorem 3. (Stability of E0)
1.R0 < 1⇒ E0 is globally stable (Figure 2)
2.R0 > 1⇒ E0 is unstable.
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Figure 2: Convergence to E0 when R0 < 1

6. And for R0>1 ?

We suppose

∃η1 > 0,∃ 0 < a < a : β(a) ≥ η1, a ∈ (a, a) (H2)

It means that preys of a certain range of age have a high
ability to reproduce.
We find a bassin of attraction Xp such that

Theorem 4. (Unbounded solutions)
If R− > 1 then limt→+∞ ‖x(t, .)‖L1 = +∞ and
limt→+∞ y(t) = +∞ for every (x0, y0) ∈ Xp (Figure 3).
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Figure 3: Unbounded solutions

When R0 > 1 and R− < 1, numerical simulations shows
• either convergence to a limit cycle (Figure 4);
• or convergence to E2 (Figure 5).
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Figure 4: Limit cycle
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Figure 5: Convergence to E2

R0 < 1 R0 > 1 andR− < 1 R− > 1

Extinction Coexistence Explosion

7. Perspectives

Let Z = C[−τ, 0]× R and suppose that
µ ≡ µ0, γ(a) = γ01[τ,+∞[(a), β(a) = β01[τ,+∞[(a).

We thus get the following delay system x′(t) = β0e
−µ0τx(t− τ )− (µ0 + γ0y(t))x(t),

y′(t) = αγ0x(t)y(t)− δy(t),
x(θ) = φ(θ), θ ∈ [−τ, 0], y(0) = y0,

(2)

where (φ, y0) ∈ Z. When R0 > 1, the equilibrium is

E∗ =
(

δ

αγ0
,
β0e
−µ0τ − µ0
γ0

)
= (x∗, y∗).

We get the characteristic equation p(λ) + q(λ)e−λτ = 0,

where
{
p(λ) = λ2 + λβ0e

−µ0τ + δγ0y
∗,

q(λ) = −λβ0e−µ0τ .

Absolute stability result from [1] implies

Theorem 5. (Local stability)

If τ
√
δy∗γ0/2π /∈ Z then E∗ is loc. asympt. stable.

Let S = {(ϕ, y) ∈ Z,
∫ τ
0 ϕ > 0, y > 0} then

Theorem 6. (Periodic solution)
For every (φ, y0) ∈ S the solution of (2) converges to a
τ -periodic function.
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Figure 6: Convergence to E∗

A future work will be to prove that the only τ -periodic solu-
tion is constant, hence the global stability of E2 in S follows.
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