Bifurcations of an age-structured predator-prey model

Q. Richard (joint work with A. Perasso^{*})

Laboratoire de Mathématiques de Besançon (LMB) * Laboratoire Chrono-Environnement Université Bourgogne Franche-Comté, France quentin.richard@univ-fcomte.fr

UNIVERSITÉ CAEN NORMANDIE

(2)

Abstract

The relationships between a predator and its prey are subject of numerous studies in ecology. Since the first mathematical model, describing over time such trophic interactions was introduced ([3], [5]), the so-called Lotka Volterra equations, and predator-prey models are still a wide subject of study in population dynamics. For a better modelling, it is interesting to consider an age-structured prey population, leading to a PDE of transport type. Once the problem is well-posed, we use some spectral analysis results [2] and a stability analysis of the equilibria [6] to study the time asymptotic behaviour of the solutions. We prove in [4] the existence of two thresholds for the extinction and the explosion of both populations. Finally, using numerical computations, we show that other behaviours can appear.

1. Lotka-Volterra model

Let (x(t), y(t)) be the populations at time t of prey and predator. In the 1920s, Alfred Lotka [3] and Vito Volterra [5] proposed the ODE model

 $\begin{cases} x'(t) = ax(t) - bx(t)y(t), \\ y'(t) = cx(t)y(t) - dy(t), \end{cases}$

with positive parameters and

• *a* is the **birth** rate of the prey:

• *d* is the **mortality** rate of the predator;

• the nonlinear term models the **predation**.

This models gives rise to periodic solution which explains the oscillation of lynx and snowshoe hare in Canada.

Figure 1: Periodic solutions

2. Age-structured model

4. Equilibria

Define

 $a_1 = \sup\{a \ge 0 : |\operatorname{supp}(\gamma) \cap (0, a)| = 0\} < \infty;$ $R_0 = \int_0^\infty \beta(a) e^{-\int_0^a \mu(s) ds} ds \text{ (extinction threshold)};$ $R_{-} = \int_{0}^{a_{1}} \beta(a) e^{-\int_{0}^{a} \mu(s) ds} da \text{ (unboundedness threshold).}$ Theorem 2. (Number of equilibrium)

$R_0 < 1$	$R_0 > 1, R < 1$	$R_{-} > 1$
E_0	E_0 and E_2	E_0

where $E_0 = (0, 0)$ and E_2 is a positive steady state.

5. Stability analysis

Using classical results of spectral analysis ([2], [6]), we get the following characteristic equation for E_0

 $\int^{\infty} \beta(a) e^{-\int_{0}^{a} [\lambda + \mu(s)] ds} da = 1$

which implies

Theorem 3. (Stability of E_0) 1. $R_0 < 1 \Rightarrow E_0$ is globally stable (Figure 2) **2**. $R_0 > 1 \Rightarrow E_0$ is unstable.

Lm^B

Figure 5: Convergence to E_2

$R_0 < 1$	$R_0>1$ and $R<1$	$R_{-} > 1$
Extinction	Coexistence	Explosion

7. Perspectives

Let $Z = \mathcal{C}[-\tau, 0] \times \mathbb{R}$ and suppose that $\gamma(a) = \gamma_0 \mathbf{1}_{[\tau, +\infty[}(a),$ $\beta(a) = \beta_0 \mathbf{1}_{[\tau, +\infty[}(a).$ $\mu \equiv \mu_0,$ We thus get the following delay system

$$\begin{cases} x'(t) = \beta_0 e^{-\mu_0 \tau} x(t-\tau) - (\mu_0 + \gamma_0 y(t)) x(t), \\ y'(t) = \alpha \gamma_0 x(t) y(t) - \delta y(t), \\ x(\theta) = \phi(\theta), \theta \in [-\tau, 0], \quad y(0) = y_0, \end{cases}$$

where $(\phi, y_0) \in Z$. When $R_0 > 1$, the equilibrium is

 $E^* = \left(\frac{\delta}{---}, \frac{\beta_0 e^{-\mu_0 \tau} - \mu_0}{----}\right) = (x^*, y^*).$

Consider that birth and death of each prey depend on his **age** $(a \ge 0)$. We get the generalized PDE structured model

$$\begin{cases} \partial_t x + \partial_a x = -\mu(a)x - y(t)\gamma(a)x, \\ y'(t) = \alpha y(t) \int_0^\infty \gamma(a)x(t,a)da - \delta y(t), \\ x(t,0) = \int_0^\infty \beta(a)x(t,a)da, \\ x(0,.) = x_0, \quad y(0) = y_0, \end{cases}$$
(1)

with $\delta > 0$ and where • $\mu, \gamma, \beta \in L^{\infty}_{+}(\mathbb{R}_{+})$ are age-dependent functions; • $\alpha \in (0, 1)$ is the assimilation coefficient of ingested preys.

We assume

 $\exists \mu_0 > 0 : \mu(a) \ge \mu_0$ f.a.e. $a \ge 0$.

(H1)

Let $X = L^1(\mathbb{R}_+) \times \mathbb{R}$ and X_+ his nonnegative cone. Consider the operator $A: D(A) \subset X \to X$, by

 $A\begin{pmatrix}\phi\\z\end{pmatrix} = \begin{pmatrix}-\phi' - \mu\phi\\-\delta z\end{pmatrix},$

 $D(A) = \{(\phi, z) \in W^{1,1}(\mathbb{R}_+) \times \mathbb{R}, \phi(0) = \int_0^\infty \beta(a)\phi(a)da\}.$ and define the function $f: X \to X$ by

 $f(\phi, z) = \begin{pmatrix} -z\gamma(.)\phi(.) \\ \alpha z \int_0^\infty \gamma(a)\phi(a)da \end{pmatrix}.$

Figure 2: Convergence to E_0 when $R_0 < 1$

6. And for R0>1 ?

We suppose

 $\exists \eta_1 > 0, \exists 0 < \underline{a} < \overline{a} : \beta(a) \ge \eta_1, a \in (\underline{a}, \overline{a})$ (H2) It means that preys of a certain range of age have a high ability to reproduce. We find a bassin of attraction X_p such that

Theorem 4. (Unbounded solutions)

If $R_{-} > 1$ then $\lim_{t \to +\infty} \|x(t,.)\|_{L^{1}} = +\infty$ and $\lim_{t\to+\infty} y(t) = +\infty$ for every $(x_0, y_0) \in X_p$ (Figure 3).

$$- \left(\alpha\gamma_0, \gamma_0\right) \left(\alpha\gamma_0, \gamma_0\right)$$

We get the characteristic equation $p(\lambda) + q(\lambda)e^{-\lambda\tau} = 0$,

where $\begin{cases} p(\lambda) = \lambda^2 + \lambda \beta_0 e^{-\mu_0 \tau} + \delta \gamma_0 y^*, \\ q(\lambda) = -\lambda \beta_0 e^{-\mu_0 \tau}. \end{cases}$

Absolute stability result from [1] implies

Theorem 5. (Local stability)

If $\tau \sqrt{\delta y^* \gamma_0} / 2\pi \notin \mathbb{Z}$ then E^* is loc. asympt. stable. Let $S = \{(\varphi, y) \in Z, \int_0^\tau \varphi > 0, y > 0\}$ then

Theorem 6. (Periodic solution)

For every $(\phi, y_0) \in S$ the solution of (2) converges to a τ -periodic function.

Figure 6: Convergence to E^*

A future work will be to prove that the only τ -periodic solution is **constant**, hence the global stability of E_2 in S follows.

We then get the abstract Cauchy Problem

 $\begin{cases} \frac{d}{dt} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = A \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} + f(x(t), y(t)), \\ (x(0), y(0) = (x_0, y_0) \in X. \end{cases}$

Classical results of the semigroup theory proves that

Theorem 1. (Existence/uniqueness) For all $(x_0, y_0) \in X_+$, Problem (1) has a unique mild solution $(x, y) \in \mathcal{C}(\mathbb{R}_+, X_+)$.

Figure 3: Unbounded solutions

When $R_0 > 1$ and $R_- < 1$, numerical simulations shows • either convergence to a limit cycle (Figure 4); • or convergence to E_2 (Figure 5).

Figure 4: Limit cycle

References

[1] F. Brauer, Absolute stability in delay equations, Journal of differential equations, 69 (1987), 185-191.

[2] K.J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer, 2000.

[3] A.J. Lotka, Elements of physical biology, Williams and Wilkins company, 1925.

[4] A. Perasso, Q. Richard, Implication of age-structure on the dynamics of Lotka-Volterra equations, To appear in Diff. and Int. Eq.

[5] V. Volterra, Fluctuations in the Abundance of a Species considered Mathematically, Nature, 118, (1926), 558-560.

[6] G.F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, 1985.